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Computation of -r Using Arithmetic-Geometric Mean 

By Eugene Salamin 

Abstract. A new formula for 7r is derived. It is a direct consequence of Gauss' 

arithmetic-geometric mean, the traditional method for calculating elliptic integrals, 

and of Legendre's relation for elliptic integrals. The error analysis shows that its 

rapid convergence doubles the number of significant digits after each step. The 

new formula is proposed for use in a numerical computation of 7r, but no actual 

computational results are reported here. 

1. Introduction. This paper announces the discovery of a new formula for 7r. 
It is based upon the arithmetic-geometric mean, a process whose rapid convergence 
doubles the number of significant digits at each step. The arithmetic-geometric mean, 
together with ir as a known quantity, is the basis of Gauss' method for the calculation 
of elliptic integrals. But with the help of an elliptic integral relation of Legendre, 
Gauss' method can be turned around to express ir in terms of the arithmetic-geometric 
mean. The resulting algorithm retains the property of doubling the number of digits 
at each step. 

The proof of the main result (Theorem la) from first principles can be conducted 
on the elementary calculus level. The references cited here for the theorems of Landen, 
Gauss and Legendre have been chosen to achieve this goal, thus allowing the widest 
possible reader audience comprehension. 

The formula presented in this paper is proposed as a method for the numerical 
computation of 7r. It has not yet been tested on a calculation of nontrivial length, 
although such a calculation is currently in progress [2]. 

2. The Arithmetic-Geometric Mean. Let ao, bo, co be positive numbers satisfy- 
ing ag = bo + c2. Define an, the sequence of arithmetic means, and b, the sequence 
of geometric means, by 

an = '2 (an- 1 + bn- 1) bn = (an-1 bn-1)/2- 

Also, define a positive sequence cn: 

e, = a2 b2P n n n- 

Two relations easily follow from these definitions. 

(2) Cn = 42(an+1 -bn-l 1 

(2) Cn =4n +1 Cn +1- 
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The arithmetic-geometric mean is the common limit 
agm (ao, bo) = lim an = lim bn- 

Because of the rapidity of convergence of the arithmetic-geometric mean, as exhibited 
by Eq. (2), the formula to be derived should be regarded as a plausible candidate for 
the numerical computation of ir. 

3. Elliptic Integrals. The complete elliptic integrals are the functions 

K(k) = 
7J2 (1 - k2 sin 2t)/2 dt, E(k) = Jo (1 - k sin2t)1/2 dt. 

Also, if k2 + k'2 = 1, then K'(k) = K(k') and E'(k) = E(k') are two more elliptic 
integrals. 

There is also a symmetric form of these integrals: 

I(a, b) =fl/ (a2 cos2t + b2 sin2t)-12 dt, 

J(a, b) = f|2 (a2 cos2t + b2 sin2 t)?1 dt. 

It is clear that 

I(a, b) = ad-K'(bla), J(a, b) = aE'(bla). 

4. Landen's Transformation and the Computation of Elliptic Integrals. Using 
the notation developed in Secfion 2 of this paper, these transformations are [6, 
Section 25.15], 

(3) I(an, bn) = Aan + 1 bn+ 1) 

(4) J(an, bn) = 2 J(an + 1 , bn + 1) )-anbn,(an + 1, b n+ 1) 

From Eq. (3) it follows that 

(5) I(aO, bo) = 7r/2 agm(ao, bo), 

and, after a little work, Eq. (4) yields 

00\ 

(6) J(aO, bo) = a - ? 2 2i cjI(aO, bo). 

For a0 =1, bo = k', the integrals in Eqs. (5) and (6) are equal to K(k) and E(k), 
respectively, while for ao = 1, bo = k, they equal K'(k) and E'(k). This is the well-known 

method of Gauss for the numerical calculation of elliptic integrals [5, pp. 78-80], [1, 
Section 17.6]. 

5. Legendre's Relation. This relation is [4, Article 171], [1, Eq. 17.3.13], 

(7) K(k)E'(k) + K '(k)E(k) - K(k)K'(k) = 7r/2. 

Equivalently, 

(8) a2I(a, b)J(a', b') + a'2J(a', b')J(a, b) - a2a'2I(a, b)I(a', b') = (ir/2)aa', 

where a, b, a', b' are subject to the restriction (b/a)2 + (b'/a')2 = 1. 
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6. New Expression for 7r. Take a0 = aI = 1, bo = k, bo = k'. As in Section 2, 
define the sequences n, bn en, an, bn cn' In Eq. (8) eliminate the J integrals by use 
of (6), and then eliminate the I integrals by use of (5). Lo and behold, the resulting 
equation can be solved for 7r! 

THEOREM la. 
4 agm(1, k)agm(1, k') 

(9) ir2= C2 1 -, 2'(c; +cI2) 

The j = 0 term in the summation has been eliminated by use of c2 + c'2- 
0 0~ 

k'2 + k2 = 1. It is best to compute cj from Eq. (1). 
Theorem la is a one-dimensional continuum of formulae for 7r. This provides 

for an elegant and simple computational check. For example, ir could be calculated 
starting with k = k' = 2-/2, and then checked using k = 4/5, k' = 3/5. The symmetric 

choice, k = k', causes the two agm sequences to coincide, thus halving the computa- 
tional burden. 

THEOREM lb. 
4(agm(1, 2-1/2))2 

j - 1 i2 

7. Error Analysis. Although Theorem la is true for all complex values of k 
(except for a discrete set), the error analysis will assume real k and k'. Then 0 < 
k, k' < 1. Let n square roots be taken in the process of computing agm = agm(1, k), 
and n' square roots in computing agm' = agm(1, k'). Then no further square roots 
are needed to calculate the approximation 

4an+ 1an'+1 

(1 0) Tn nI = '1 
(10)~~~~~~~ _ 

En. 2ic 2 -E 21 ,2 
i= Ci j= 1 Ci 

A rough estimate shows that an+ 1 differs from agm by cn, +2' and that the 
finite sum differs from the infinite sum by 2n+3Cn+2' Thus, the numerator and 
denominator in (10) have been truncated for compatible error contributions, and the 
denominator error is dominant. 

To obtain rigorous error bounds, introduce the auxiliary quantity 7rrnn, whose 
denominator is taken from (10), but whose numerator is taken from (9). The first 
step is to establish the existence of enn. e nn, such that 

(11) 0 < 7r-Tr nn' < enn' 

? < 7Tnn' nnI < enn' 

(12)<e 
nn nn n 

These three inequalities imply that 1 - 7nn < enn. 
The left-hand inequalities in (11) and (12) are obvious. From the general inequal- 

ity (1/x) - (1/(x + y)) < y/x2, valid for positive x and y, it follows that 

-i agm nn < 2ic + E2 nn 4 ag~m agm i Ci ; 
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This establishes (11), with error bound 

(13) 2 agm agm' 2 n2 ;) (13) enn'= +~~+2 n+2 

Proceeding to the next inequality, we first get 

Ss e nn -+ ' nn' agm 
< 

gm' (an+ 1 an'+ 1 - agm agm'). 

Substitute an+ 1= agm + s, a' = agm' + s', where 
00 00 

s = E Cj, s'= EC 
n+2 nn+2 

and use agm < 1, agm' < I to get 

'n-n ,nn' < i(S + s + ss')/agm agm'. 

Also, since s < 1, s' < 1, it follows that ss' < (s + s')/2. Thus, inequality (12) is 
established with error bound 

- 3 irf 00 0 

(14) enn,' =- 2 L C + L2 Ci) 2 agm agm \ n+2 n'+ 2 / 
Finally, a term-by-term comparison of (13) and (14), using 21aj > 1 and ir > 3, shows 
that en n < enn'. 

At this point, a needed inequality is derived. 

a, a, + bj =: 2a,+ 1, 

2a1c,+1 + + =cj2 = (a_11 - aj)c,, 

(15) a1(c1 + 2c+l) < a,_, c;- 

Consider the first summation in (13), but with the upper limit 00 replaced by 
finite N. Perform the following sequence of operations, each of which increases the 
sum. First, replace aN by aN-l. Next, repeatedly apply (15) to the pair of highest- 
indexed terms in the sum. At the end, we are left with the single term 2n+2an+ cn+2 

< 2n+2Cn+2, which is thus an upper bound for the initial summation. Since N was 

arbitrary, the infinite summation also has this upper bound. Therefore, 
27T2 

(16) enn'< , (2%n +2 +2 2) 
agm agm n+ An upper bound for Cn+2 is needed now. It is convenient to use the abbrevia- 

tions 
Xn = log Cn,, gn = log(4an)- 

Equation (2) gives xn as the solution to an inhomogeneous linear difference equation. 

/ n \ 
Xn = 2n X0 F 2 igj). 

j=B a 

By r-earrangement, 
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Using g1 - gj+ 1 > 0, gn < log 4, and xo - g, = (1/2) log(c, /4al), we get 

(17) xn <2n-1[Z 2i+1log(a1/a+j+)-log(4ai/cjb] +log4. 

For the purpose of an error analysis, the expression within brackets could be calculated 

numerically for any case of interest. However, it can be evaluated in closed form [7, 

p. 14] and is equal to - 7rK'(k)IK(k) = - ir agm/agm'. Then 

Xn < - 7r(agm/agm')2 n-1 + log 4. 

Substituting this into (16) yields the final result. 
THEOREM 2a. 

87T2 [ ( agm nam 
17T 7rnn'1< agm agm' [2nexp a-gm 2g + 2) exp ( yagm 2 )j 

In the symmetric case, with frf = frf, Theorem 2a simplifies to 

THEOREM 2b. 

I - 7n I < (lr2 2n++4/agm2 ) exp(- 2f 2n+ 

The number of valid decimal places is then 
THEOREM 2c. 

- log1 1 hr - n I > (ir/log 10)2n+1 - nlog102 - 21og10(47r/agm). 

8. Numerical Computation. Raphael Finkel, Leo Guibas and Charles Simonyi 

are currently engaged in calculating ir using the method proposed in this paper [2]. 

The operations of multiprecision division and square root are reduced to multiplication 

using a Newton's method iteration. The multiplications are then performed by the 

Sch6nhage-Strassen fast Fourier transform algorithm [10], [8, p. 274]. The computa- 

tion, to be run on the Illiac IV computer, is expected to yield 33 million bits of ir in 

an estimated run time of four hours. This run time is determined by disc input-output, 

and the actual computation is estimated to be only a couple of minutes. Alas, they do 

not plan to convert to decimal. 

9. Concluding Remarks. The main result of this paper, Theorem la, directly 
follows from Gauss' method for calculating elliptic integrals, Eqs. (5) and (6), which 

was known in 1818 [3, pp. 352, 360] , and from Legendre's elliptic integral relation, 

Eq. (7), which was known in 1811 [9, p. 61]. It is quite surprising that such an 

easily derived formula for ir has apparently been overlooked for 155 years. The author 

made his discovery in December of 1973. 
The series summation which was used to simplify Eq. (17) was also discovered 

by Gauss [3, p. 377]. An interesting consequence of this result of Gauss is that e71 

can be expressed as a rapidly convergent infinite product. If ao = 1, b0 = 2-/2, then 

e =321J(JL). 

Charles Stark Draper Laboratory 
Cambridge, Massachusetts 02139 
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